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SEQUENTIAL ARRAY ALGEBRA USING DIRECT SOLUTION OF EIGENVECTORS

PROBLEM OF SEQUENTIAL ARRAY EQUATIONS

The new computationally powerful array algebra technology unifying

the sciences of numerical analysis, mathematical statistics and modern

signal processing would become more flexible if the problem of sequential

array observation equations could be efficiently solved, Rauhala (1974

p 113, 1976 p 79 , 1977, 1978, 1979, 1980a, 1980b), Jancaitis and Magee

(1977), Snay (1978). In the illustratsive case of three dimensions the
Accession For

sequential observation equations read NT IS GRA&I
r 1 DC TAB
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where the array multiplications 6 "

are defined as

lek, 4/1 et' ri, f-. - ,
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The last set of observation equations consists of dot multiplications,

i.e., discrete direct observations of parameters X so that in

tg
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the conventional monolinear notations where X , Av': 4 C j is

treated as a long column vector the design matrix would be diagonal.

The above observation equations result in the normal equations..

~ X (3)

where the dot multiplications ip// *Z/, are denoted .1
We now assume that the symmetric square matrices oo',a,6 are brought to

satisfy the following spectral decompositions, for example by using the

parameter transformations of Buchanan and Thomas (1968),

r 7

Thus is the common orthonormal eigenmatrix of all matrices, and s7r

are its counterparts of matrices # . r - ... . The

diagonal matrices v0. Ai, Y. contain the eigenvalues of matrices "., ,.

The present paper is focused on the computational solution of

.equation (3) under the spectral decomposition of (4). The derivational

part of the solution is rather straight-forward, i.e., premultiplications

with R , post multiplications with S rand the "back" multiplications

with -r result in the solution of the diagonal system by

= r7"' '

AAA W1 A~d 043 W 4 4  Z4, 14
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Now the inverse transformations with 7 S 7result in the solution

familiar from the filtering theory of signal processing

7-
S (6)

In terms of signal processing //can be called "transfer function".

In terms of the general theory of linear estimators and matrix inverses,

Rauhala (1980b), estimator X is unbiased if all . . .

For biased or nearly biased parameters j , ;/ /, --h , the

bias, variances and the norm of 2 can be minimized through the

pseudo-inverse solution simply by putting h4... - for .4 -

All of these solutions of normal equations satisfy the least squares

criteria

V1 V& (7)

In several applications of array algebra the dimensions
A

of the array fcan range several hundreds so that the array solution

of millions of parameters is split into the problems of solving three

small orthonormal eigenmatrices RS, 7% After these matrices are

known the array multiplications of equation (6) can be performed along

the lines of the computer program presented in (Rauhala, 1980a). The

remainder question of this paper handles the computational probiw of

solving for matrices 7.
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DIRECT SOLUTION OF EIGENVECTORS

The computation of eigenvalues Jiof matrix q and the corres-
A n

ponding eigenvectors is presently dominated by iterative methods putting V

severe restrictions on the dimensions and conditioning of the matrix.

Further the iterative solutions do not guarantee the orthonormality of

matrices T.,, ? in .

In the new direct approach of finding ?,,;Pwe split the eigen-

value problem in two separate parts, i.e., we assume that the eigenvalue

)"is known or computed a priori. We are seeking direct solutions for

the corresponding eigenvectors Xi . y as the non-homogeneous

solution of the consistent systems

091 Xi - 0 (8a)

(8b)

where

= ,-A,. .(9)

The solutions are found using the general theory of matrix inverses,

Rauhala (1980b), by

r (10a)

(lOb)

Vectors 11 U rare arbitrary and the g-inverse 0. needs to satisfy

the condition o..4 , -w 9 in order to have (lOa), (lOb) as the

solutions of (8a), (8b).
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Because by the definition / - /9 "'Z/ E 0

the maximum rank of matrix is #Pa&-i. We perform the rank

factorization of q as

where the submatrixq has to satisfy the condition 9j- 4  4 !.ja,
:3

This condition can be derived by eliminating the "independent" parameters

Z, from the system
.9,s

I90 Z,+ OF Z-L WV (12a)

(12b)

by

Zv w o ( A, V , Z, (13)

Substitution into the linearly dependent part of (12b), yields

The computational rule of finding , of (11) is simply

I,- -1
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because it satisfies the condition 4. , - 9/ yielding

A[J (16a)

L0 
0 

IA4

ol 1(1bo I -~ ~4 ] 6b)

The unnormalized eigenvector solutions become now from (l0a), (l0b)

I(1 7a-

4_-

(17b

where the A-# last terms ofA I, are chosen to be ones. The normalized

eigenvectors become

ki P
t  v

(18a)

= 
0 ,-0. r,. .

(18b)
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By repeating these solutions for all eigenvalues J;,, // the

sought orthonormalized matrices of 9 - ,' .J R become

(19)

For a symmetric matrix t

OPERATION COUNT OF THE DIRECT SOLUTION

Computation of ; for a symmetric non-sparse matrix requires in

the order of r-, .4 operations (scalar multiplications and additions)

for each ( 5 , A."Z , or totally 47yoperations. In our array algebra

solution this operation count is by no means prohibitive as we are solving

for Mas 124 -n parameters. In fact, the three-dimensional
i3

array multiplications using the general non-sparse matrices .., 7- in

equation (6) require the same magnitude of o operations, Rauhala (1976,

1979, 1980a), Blaha (1977).

If the spectral decomposition of the I- ,-. leading partition

of Q were known as 7 - and the same partition could be

used for allA)j'then we could perform the one-time multiplication.
and each ( would require

74-operations or totally R would require 4 3 operations. This is the

same magnitude of operations required for a two-dimensional array multi-

plication of the type of equation (6).

In several practical applications matrix 4 is banded and only a
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few last terms of are non-zeroes so that each 04 requires J4

operations or totally 6 44, operations for , where 6 is the bandwidth

(usually 64' for symmetric matrices). In some practical experiments

the author performed the double precision orthonormalization of a

300 X 300 tridiagonal matrix in a CPU time of a few seconds using a

minicomputer.

APPLICATIONS

The above array solutions were used for simulations of non-

separable filters of finite element solution of regularly gridded data.

Using these filters or impulse responses a rigorous least squares solution

of 601 X 1201 > 720 000 nodes was convolved in a CPU time of less than

one minute and using less than 30 K bytes of the minicomputer core space.

For the non-stationary case of irregular gridded data the above

derived array solution (6) removes some restrictions of the one-batch

array equations. For example in digital terrain, geoid, gravity anomaly

etc. modeling using the method of array algebra finite elements the

observed nodes are allowed to have completely arbitrary locations and

a priori weights. Simultaneously the operators R,., 7"can be brought

to exhibit a structure of generalized fast transforms, (Rauhala (1980a),

so that Rj,7" are never explicitely computed (requiring no core space)

and multicplication A W requires less than I&n. - operations,i.e.,

the total solution of i": ,,4 parameters requires the magnitude of

A/operations.

The above very fast array solution can exhibit such general
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properties which seem to be at odds with the restrictive nature of'each

sequential array batch: For example, the math model can contain equality

constraints, discontinuities and break-lines and single point constraints

(minimum, maximum, saddle etc. points). Furthermore, the math model

allows automatic bridging of "smooth areas" (sparse data sampling) or

a priori identified "blunder areas" (sampled data with zero a priori

weights). Those features allow introduction of batches of fill-in samples

replacing large areas of blunderous observations, batches of overlapping

data samples, etc. Thus the math model can be used for modeling even

"pathologically" difficult and ill-behaving empirical functions with

base and in the retrieval and usage of the stored data base.

The above and many other applications of the sequential array

algebra warrant detailed investigations. For example some carefully

designed net adjustment problems of large dimensions are within the

capabilities of the above array solution.
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